Myeloma plasma cells alter the bone marrow microenvironment by stimulating the proliferation of mesenchymal stromal cells.
نویسندگان
چکیده
Multiple myeloma is an incurable hematologic cancer characterized by the clonal proliferation of malignant plasma cells within the bone marrow. Numerous studies suggest that the myeloma plasma cells occupy and alter the stromal tissue of the bone marrow as a means of enhancing their survival and growth. However, the nature and magnitude of the changes to the stromal cell tissue remain to be determined. In this study, we used mesenchymal stromal cell and osteoblast-related cell surface marker expression (STRO-1 and alkaline phosphatase, respectively) and flow cytometry to enumerate mesenchymal stromal cell and osteoblast numbers in bone marrow recovered from myeloma patients at the time of diagnosis. Using this approach, we identified an increase in the number of STRO-1 positive colony forming mesenchymal stromal cells and a concomitant decrease in alkaline phophatase osteoblasts. Notably, this increase in mesenchymal stromal cell numbers correlated closely with plasma cell burden at the time of diagnosis. In addition, in comparison with the osteoblast population, the STRO-1+ mesenchymal stromal cell population was found to express higher levels of plasma cell- and osteoclast-activating factors, including RANKL and IL-6, providing a mechanism by which an increase in mesenchymal stromal cells may promote and aid the progression of myeloma. Importantly, these findings were faithfully replicated in the C57BL/KaLwRij murine model of myeloma, suggesting that this model may present a unique and clinically relevant system in which to identify and therapeutically modulate the bone microenvironment and, in turn, alter the progression of myeloma disease.
منابع مشابه
Multiple Myeloma Bone Marrow Mesenchymal Stromal Cells Inhibit CD8+ T Cell Function in a Process that May Implicate Fibroblast Activation Protein α
Background: Multiple myeloma (MM) is a malignant plasma cell proliferative disorder with limited immunotherapy treatment because of T cell dysfunction. Objective: To investigate the immunomodulatory function of bone marrow mesenchymal stromal cells (MM-BMSCs) on CD8+ T cells. Methods: Proliferation and cytotoxicity were detected by c...
متن کاملEvidences of Early Senescence in Multiple Myeloma Bone Marrow Mesenchymal Stromal Cells
BACKGROUND In multiple myeloma, bone marrow mesenchymal stromal cells support myeloma cell growth. Previous studies have suggested that direct and indirect interactions between malignant cells and bone marrow mesenchymal stromal cells result in constitutive abnormalities in the bone marrow mesenchymal stromal cells. DESIGN AND METHODS The aims of this study were to investigate the constitutiv...
متن کاملComparison of Transplantation of Bone Marrow Stromal Cells (BMSC) and Stem Cell Mobilization by Granulocyte Colony Stimulating Factor after Traumatic Brain Injury in Rat
Background: Recent clinical studies of treating traumatic brain injury (TBI) with autologous adult stem cells led us to compare effect of intravenous injection of bone marrow mesenchymal stem cells (BMSC) and bone marrow hematopoietic stem cell mobilization, induced by granulocyte colony stimulating factor (G-CSF), in rats with a cortical compact device. Methods: Forty adult male Wistar rats w...
متن کاملRepurposing tofacitinib as an anti-myeloma therapeutic to reverse growth-promoting effects of the bone marrow microenvironment.
The myeloma bone marrow microenvironment promotes proliferation of malignant plasma cells and resistance to therapy. Activation of JAK/STAT signaling is thought to be a central component of these microenvironment-induced phenotypes. In a prior drug repurposing screen, we identified tofacitinib, a pan-JAK inhibitor FDA-approved for rheumatoid arthritis, as an agent that may reverse the tumor-sti...
متن کاملComparison of Proliferation and Osteoblast Differentiation of Marrow-Derived Mesenchymal Stem Cells on Nano- and Micro-Hydroxyapatite Contained Composite Scaffolds
Bones constructed by tissue engineering are being considered as valuable materials to be used for regeneration of large defects in natural bone. In an attempt to prepare a new bone construct, in this study, proliferation and bone differentiation of marrow-derived mesenchymal stem cells (MSCs) on our recently developed composite scaffolds of nano-, micro-hydroxyapatite/ poly(l-lactic acid) were ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Haematologica
دوره 99 1 شماره
صفحات -
تاریخ انتشار 2014